
Abstract
SWAPHI (freely available at http://swaphi.sourceforge.net) is the first parallelized

algorithm employing the emerging Xeon Phis to accelerate Smith-Waterman protein

database search. It is designed based on the scale-and-vectorize approach, i.e. it

boosts alignment speed by effectively utilizing both the coarse-grained parallelism

from the many coprocessing cores (scale) and the fine-grained parallelism from 512-

bit wide single instruction multiple data (SIMD) vectors per core (vectorize). By

searching against the large UniProtKB/TrEMBL protein database (13,208,986,710

amino acids), SWAPHI achieves a performance of up to 58.8 billion cell updates per

second (GCUPS) on a single Xeon Phi and up to 228.4 GCUPS on four Xeon Phis.

SWAPHI: Smith-Waterman Protein Database Search

on Xeon Phi Coprocessors

Yongchao Liu and Bertil Schmidt

Institute of Computer Science, University of Mainz, Germany

E-mails: {liuy, bertil.schmidt}@uni-mainz.de

Performance Evaluation
• 20 protein query sequences

 Lengths range from 144 to 5,478

• UniProtKB/TrEMBL database

Contains 41,451,118 sequences

Has 13,208,986,710 amino acids

• A compute node with two Intel

E5-2670 8-core 2.60 GHz CPUs

and 64 GB RAM

• 4 Xeon Phis

Product name B1PRQ-

5110P/5120D

Each Xeon Phi has 60 processor

cores and 7.9 GB RAM

• Both InterSP and InterQP are

superior to IntraQP

• SWAPHI achieves a performance

of up to 58.8 GCUPS on a single

Xeon Phi and up to 228.4

GCUPS on four Xeon Phis, by

using InterSP.

• Compared to BLAST+ on 8

cores, SWAPHI performs better

for most queries and runs 1.19×

faster on average (1.86×

maximally)

• Compared to SWIPE on 8 and 16

cores, SWAPHI gives a speedup

of 2.49 and 1.34 on average (2.83

and 1.52 maximally), respectively

Smith-Waterman Algorithm
Given two sequences S1 and S2, the recurrence of the Smith-Waterman algorithm

with affine gap penalty is defined as

• α is the gap opening penalty

• β is the gap extension penalty

• sbt is a scoring function (usually represented as a scoring matrix) that defines the

substitution scores between characters

 

 

 

, , ,, 1, 1 1 2

, 1, 1,

, , 1 , 1

max 0, , , ([], [])

max ,

max ,

i j i j i j i j

i j i j i j

i j i j i j

H E F H sbt S i S j

E E H

F F H

 

 

 

 

 

 

  

  

Xeon Phi Architecture
A Xeon Phi is a shared-memory many-core computer running a specialized Linux

OS.

• Comprised of a set of processor cores, and

each core contains 4 hardware threads

• Each core includes a new vector processing

unit (VPU) featuring 512-bit wide SIMD

instructions.

• Each vector can be split to either 16 32-bit-

wide lanes or 8 64-bit-wide lanes

• Two usage models offload and native (we have

adopted the offload model)

Scalar unit Vector unit

32 KB L1 I-cache

32 KB L1 D-cache

512 KB L2 cache

Core 0

Scalar unit Vector unit

32 KB L1 I-cache

32 KB L1 D-cache

512 KB L2 cache

Core i

Scalar unitVector unit

32 KB L1 I-cache

32 KB L1 D-cache

512 KB L2 cache

Core j

Scalar unitVector unit

32 KB L1 I-cache

32 KB L1 D-cache

512 KB L2 cache

Core N-1

Bidirectional ring bus

...

...

Implementation of SWAPHI
• Three variants:

Inter-sequence model with score profile (interSP)

Inter-sequence model with query profile (InterQP)

Intra-sequence model with query profile (IntraQP)

• Adopted a tiled computation

To reduce the number of memory

accesses to the intermediate buffers

• Database sequence indexing

Used sequence profiles proposed in

CUDASW++ 3.0 for GPU

computing

Dynamic sequence data loading at the

runtime chunk-by-chunk

Memory mapping files to allow for

big databases

0
20
40
60
80

100
120
140
160
180
200
220
240

1
4

4

1
8

9

2
2

2

3
7

5

4
6

4

5
6

7

6
5

7

7
2

9

8
5

0

1
0
0
0

1
5
0
0

2
0
0
5

2
5
0
4

3
0
0
5

3
5
6
4

4
0
6
1

4
5
4
8

4
7
4
3

5
1
4
7

5
4
7
8

G
C

U
P

S

Query length

InterSP (1 Phi) InterSP (4 Phis) InterQP (1 Phi)

InterQP (4 Phis) IntraQP (1 Phi) IntraQP (4 Phis)

0

1

2

3

4

5
1

4
4

1
8

9

2
2

2

3
7

5

4
6

4

5
6

7

6
5

7

7
2

9

8
5

0

1
0
0
0

1
5
0
0

2
0
0
5

2
5
0
4

3
0

0
5

3
5
6
4

4
0
6
1

4
5

4
8

4
7
4
3

5
1
4
7

5
4

7
8

S
p

ee
d

u
p

Query length

InterSP (2 Phis) InterSP (4 Phis) InterQP (2 Phis)

InterQP (4 Phis) IntraQP (2 Phis) IntraQP (4 Phis)

0

50

100

150

200

250

300

350

400

450

500

550

1
4

4

1
8

9

2
2

2

3
7

5

4
6

4

5
6

7

6
5

7

7
2

9

8
5

0

1
0
0
0

1
5
0
0

2
0
0
5

2
5
0
4

3
0
0
5

3
5
6
4

4
0
6
1

4
5
4
8

4
7
4
3

5
1
4
7

5
4
7
8

G
C

U
P

S

Query length

SWAPHI (4 Phis) BLAST+ (8 cores) BLAST+ (16 cores)

SWIPE (8 cores) SWIPE (16 cores)

Comparison between our three variants

Scalability in terms of number of Xeon Phis

Comparison to SWIPE and BLAST+

Conclusion and Future Work
• Computational characteristics observed from our programming and evaluations:

Device memory accesses on the Xeon Phi are still heavy in some sense, albeit with two-level

caching and high memory bandwidth.

Data accesses should be aligned as much as possible.

Gather intrinsic functions are not as lightweight as expected, even if the data accesses has good

locality.

• Future work

Employ a hybrid parallelism model to concurrently conduct alignments on both CPUs and

Xeon Phis.

Trace back optimal alignments on Xeon Phis for short biological sequences, e.g. next-generation

sequencing reads.

Category Intrinsic functions

SIMD parallelization models

Inter-sequence Intra-sequence

Vector mask _mm512_int2mask 

Arithmetic _mm512_add_epi32  

_mm512_mask_sub_epi32 

Compare _mm512_cmpge_epi32_mask 

_mm512_cmpgt_epi32_mask 

Initialization _mm512_set_epi32  

_mm512_setzero_epi32  

Maximum _mm512_max_epi32  

Load _mm512_load_epi32  

_mm512_extload_epi32  

Shuffle _mm512_permutevar_epi32 

_mm512_mask_permutevar_epi32  

Store _mm512_store_epi32  

_mm512_packstorelo_epi32 

_mm512_packstorehi_epi32 

Intel C++ compiler intrinsic functions used

Code segments used for substitution score loading from a query profile

Program workflow of SWAPHI

vecInt16 = _mm512_set1_epi32(16); /*offset register*/

/*load one residue vector from the subject sequence profile (__m128i* __restrict__ sequences)*/

vecDB = _mm512_extload_epi32(sequences, _MM_UPCONV_EPI32_UINT8, _MM_BROADCAST32_NONE, 0);

/*compare each residue index with 16 and returns a vector mask*/

vecMask = _mm512_cmpge_epi32_mask(vecDB, vecInt16);

/*adjust the residue indices that are greater than or equal to 16*/

vecDB = _mm512_mask_sub_epi32(vecDB, vecMask, vecDB, vecInt16);

(a) Load and pre-process subject sequence residues (outer loop of the SW algorithm)

(b) Load substitution scores for each query position (inner loop of the SW algorithm)

/*load the low and high 16 elements of the query profile row (__m128i * __restrict__ qrfRow)*/

vecLo = _mm512_extload_epi32(qprfRow, _MM_UPCONV_EPI32_SINT8, _MM_BROADCAST32_NONE, 0);

vecHi= _mm512_extload_epi32(qprfRow + 1, _MM_UPCONV_EPI32_SINT8, _MM_BROADCAST32_NONE, 0);

/*get the substitution scores*/

vecSubScore = _mm512_permutevar_epi32(vecDB, vecLo);

vecSubScore = _mm512_mask_permutevar_epi32(vecSubScore, vecMask, vecDB, vecHi);

Wait for the completion of all host threads

Sort all alignment scores and output the results

Offload to transfer query data and scoring matrix, and to

allocate intermediate alignment score buffers on the

coprocessor (for each host thread)

Workload available?

Fetch a chunk of

indexed database

data

Offload to perform

alignments against the

data chunk using

multi-theading

Offload to release

coprocessor memory

and then exit

Yes

 No

Perform alignments by creating as many host threads

as the coprocessors used

Construct a query profile for the query if applicable

